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Abstract: The potential of diffuse reflectance near-infrared spectroscopy combined with
pattern recognition to discriminate between olives (Olea europaea L.) of different
qualities has been tested. The sample set was formed of sound olive fruits and those
showing the most common alterations of olives, which lead to decreased oil quality,
namely freeze damages, harvest after falling on the ground, fermentation due to
prolonged storage time, and olive tree diseases. Near-infrared (NIR) spectra were
recorded between 9900 and 4100cm™'. Preliminary studies of the data set structure
were performed using hierarchical cluster analysis and principal component analysis. Dis-
criminant analysis provided prediction abilities of 100% for sound, 79% for frostbite, 96%
for ground, and 92% for fermented olives using a leave-a-fourth-out cross-validation
procedure. Quantification of oil and water content in the olives was also approached by
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using partial least squares (PLS) regression. Results, in terms of predictive ability using a
leave-one-out cross-validation, were compared for calibration using the whole sample set
and calibrations for the sound and damaged samples separately. Relative errors of
prediction using all samples were 7.2% and 3.4% for oil content and humidity, respect-
ively. Using only sound samples, relative errors of prediction of 3.8% and 2.8% for oil
and water content, respectively, were obtained. Thus, better accuracy could be
achieved when classification of the olive samples prior to quantitative analysis was
performed. These results demonstrate the utility of NIR spectroscopy to differentiate
olives of different qualities. Using NIR, a fast selection of sound olives in a quality-
orientated production facility becomes feasible.

Keywords: Classification, Fourier-transform near-infrared spectroscopy, olives,
partial least squares, pattern recognition

INTRODUCTION

The olive fruit (Olea europaea L.) constitutes the raw material in olive oil
production. Virgin olive oil is obtained from the fruit of the olive tree only
by mechanical or other physical means in conditions, particularly thermal
conditions, which do not alter the oil in any way. As one of the few
vegetable oils which can be consumed directly without the need of refining,
it completely conserves vitamins, antioxidants and other dietary important
constituents and can be qualified as a natural product. But to be considered
fit for direct consumption virgin olive oil must fulfil different quality
criteria that, according to the European Commission regulations,'*! include
good organoleptic characteristics (taste and aroma), low acidity, low
peroxide value, and absence of contaminants. Oil of inferior quality is
called lampante and must be refined prior to consumption.

From the industrial point of view, the two major parameters that
characterize the olive as raw material are oil content and humidity
(vegetation water). In routine laboratories, traditional slow analytical
methods to determine oil content have been nowadays substituted by direct
spectroscopic measurement using nuclear magnetic resonance (NMR).”!
These analyses involve parameters that exclusively refer to the industrial
yield (i.e., to the amount of oil which can be extracted from a certain mass
of olives). But the production of good quality oil must start necessarily with
raw material of high quality. Damage of the olives during growth phase,
harvest, and storage leads to decreased oil quality."! Analytical methods to
evaluate the state of the olives before oil extraction are therefore of crucial
importance. The only quality parameter that is actually measured in olives
is acidity (free fatty acid content). Sound fruits contain low levels of free
fatty acids, but these values are increased by different alterations of the
olive fruit. Thus, the measurement of acidity provides a rough estimation of
the alterations the olive has suffered. The method implicates the extraction
of the oil from the olive. This is normally done by the Abencor method,"’
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which reproduces the industrial oil extraction process in laboratory scale.
Afterwards, acidity is determined in the oil by an acid-base titration with
potassium hydroxide in ethanol/ether and phenolphthalein as indicator.[!
Hence, this method is slow and elaborate. Consequently, only few
producers measure acidity in olives, and the quality control of the raw
material, if done at all, is mostly reduced to visual inspections. Nevertheless,
a separation of olives according to their quality would be necessary if the
production of extra virgin olive oil is the goal. To do this, a fast and
objective analytical method is desirable.

Near-infrared spectroscopy (NIRS) is a valuable tool for the analysis of
complex samples. In many cases, the analysis can be carried out without any
sample preparation, thus providing results in an experimental simple way. In
the analysis of olives, NIRS has been proposed as a convenient alternative for
the direct determination of oil and water content simultaneously in the milled
olives.”! This method avoids the time-consuming step of drying the sample,
which is needed in all above-mentioned methods and thus provides results
much faster. More recently, the quantitative determination of oil content,
humidity, and major fatty acids in intact olive fruits has been approached."™
These works demonstrate that NIRS can constitute an efficient and flexible
solution for the fast analysis of large number of raw material samples.

A further benefit of this technique is that it is possible to bypass
classical, quantitative chemical analysis if the desired property is reflected
in the overall chemical composition of the sample. Using chemometrics,
this information can be extracted from the spectra. Thus, in the analysis of
olives, the measurement of traditional parameters like acidity become
dispensable, if the information contained in the near-infrared spectra of the
olives is sufficient for the discrimination of sound and defective olives.

The aim of the current study is to explore the potential of FT-NIR
spectroscopy to provide a fast method to classify olives according to
their quality before the extraction of the oil in the production facility. For
this, the most common types of alterations that olives can suffer were
considered. They included freeze damage, deterioration of the fruit flesh
due to the fall from the tree and the permanence on the ground for several
days, fermentation as a consequence of excessive storage time in piles, and
infestation by olive tree diseases.

Furthermore, it is well-known that parameters like harvest year and
variety have great influence on oil content and humidity in the olives. In
previous studies, authors report on the difficulties of partial least
squares (PLS) calibration transfer between different years.[g] In the
current work, we furthermore investigate the influence of olive quality on
the determination of oil content and humidity by PLS. This is done by
comparing the predictive ability of calibration models that are built on
the individual classes using a classification step prior to quantification
with the predictive ability of the calibration model that is built on the
whole sample set.
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EXPERIMENTAL
Olive Samples

A total of 122 olive samples were collected in the period January —March 2004
in the olive culture and process research station CIFA Venta del LLano (Jaén,
Spain). They included 36 samples of sound olives (of 8 different varieties)
collected from the tree, 28 of olives with frostbite, 6 samples with diseases
(Verticillium wilt and Anthracnose), 26 fermented olive samples, and 26
samples of olives that had been collected from the ground. In Table 1,
sample details including range, mean, standard deviation of oil content and
humidity, and the number of varieties present in each class are presented. In
tables, figures, and in the text, samples will be referred to in following five
classes: sound, frostbite, disease, fermented, and ground.

Reference Analysis

One kilogram of the sample was milled in a hammer mill (4-mm strainer size).
To determine water content, 45 g of the sample was dried for 12 hr in an oven
at 105°C. The loss of weight gave the percentage of water and volatile matter
of the sample.!'”! The dried sample was then used to measure the oil content,
employing NMR spectroscopy.'!

Acquisition of NIR Spectra

Fourier-transform near-infrared spectra were measured in diffuse reflectance
mode using an Antaris Near-IR Analyzer (Thermo Nicolet Corporation,
Madison, WI, USA). The instrument is equipped with an integrating sphere
that contains an internal gold reference.

The milled sample was filled into a sample cup (5-cm diameter, 1-cm depth)
that was placed on top of the integrating sphere optics and rotated during
measurement (10 rounds per minute). All spectra were obtained between 4100

Table 1. Sample characteristics of the individual classes

Humidity % Oil content %

(mean) SD Range (mean) SD Range Varieties

Sound 532 3.6 46.1-61.8 23.0 22 18.9-28.8 8
Frostbite 44.3 3.6 37.7-50.6 26.3 26 22.2-323 7
Ground 38.9 32 339-444 28.3 3.7 23.5-353 4
Fermented 46.3 39 329-474 27.5 09 27.2-305 —
Disease 372 12.1 232-53.9 25.6 6.1 18.0-31.9 4
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and 9900cm ™! at a resolution of 8cm ™! and were mean of 50 scans, which
resulted in an acquisition time of 1 min. A background spectrum average of
50 scans was collected before each sample measurement.

Data Analysis
Data Pretreatment

Mean centering was used to enhance the smaller spectral differences
removing the common information from the spectra. Multiplicative
signal correction (MSC), which uses a mathematical function originally
developed to compensate for variations in light scattering, was also
applied.""! This correction method assumes that the wavenumber depen-
dency of light-scattering or baseline signal is different from that of the
chemical information. The MSC treatment is often used in near-infrared
diffuse reflectance measurements to compensate for variations in effective
sample thickness that are caused by differences in particle size and scatter-
ing. First derivatives were calculated with the polynomial method of
Savitzky-Golay."*!

Pattern Recognition Techniques

Pattern recognition techniques can be mainly divided into two categories,
namely unsupervised and supervised techniques. The former focus on
investigating the structure in the data, detecting similarities among samples
or the presence of outliers. They do not require information about class
membership because their aim is not to define a classification rule. In
contrast, supervised methods use information on class membership to build
up a classifier. The models are constructed using the sample characteristics
of a training set to establish classification rules, which are then applied to
obtain the class-membership of unknown samples.

Unsupervised Pattern Recognition

Hierarchical Cluster Analysis (HCA). For cluster analysis, each sample is
treated as a point in an n-dimensional space defined by the measurement
variables. Cluster analysis assesses the similarity between samples by
measuring the distances between the points in the measurement space. In
this work, the similarity matrix for hierarchical clustering was calculated
using Euclidean distances, and the Ward algorithm!"*! was used to generate
the dendrograms.

Principal Component Analysis (PCA). The overall goal of PCA is to reduce
the dimensionality of a data set. PCA decomposes the original data matrix into
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a product of two matrices, the scores and the loadings matrix. The loadings
form the new reduced coordinate system in which the samples are represented
with their score values. Thus, the scores matrix contains the information of the
objects. When PCA is applied for pattern recognition purposes, this infor-
mation is used to detect groupings among the samples.

Supervised Pattern Recognition

In the discriminant analysis classification technique (TQ Analyst 6.1.1),
principal component analysis (PCA) is performed to reduce the number of
variables in the analysis. The loading vectors of the principal components
are then used as the variables for entry into a quadratic discriminant
analysis (QDA) model, which maximizes the variance between groups and
minimizes the variance within groups. Each sample is represented by its
score values as a data point in the new dimensions, and a multivariate
normal distribution is calculated for each class using the information of the
training samples. To determine the class membership of an unknown
sample, its Mahalanobis distances are measured to the means of all classes
and the unknown is assigned to the class with the minimum distance. Further-
more, a threshold limit of 2 Mahalanobis distance units was defined. If the
minimum distance of an unknown was above the threshold distance value,
the sample was considered not to belong to any class.

Multivariate Calibration: Partial Least Squares Regression

Partial least squares (PLS) regression is one of the most widely used methods
for multivariate calibration. It is based on spectral decomposition in which the
original variables are replaced by so-called latent variables, which are linear
combinations of the original ones." For this calculation, PLS uses the
spectral and concentration information and maximizes the covariance
between them, so achieving latent variables that are directly related to
the constituents of interest. PLS is a powerful full spectrum method with
excellent model-diagnostic capabilities, which can account for undefined
spectral variations that are not related to the constituents of interest, as long
as they are included in the calibration phase.

Software

Hierarchical cluster analysis (HCA) was performed using the Statistics
Toolbox (Version 2.2 (R11), 1998) for Matlab (The Mathswork, Inc.,
Natick, MA, USA). Principal component analysis (PCA), discriminant
analysis, and PLS were done using TQ Analyst 6.1.1 (Thermo Nicolet Corp.).
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RESULTS AND DISCUSSION
Near-Infrared Spectra of Olives

The fruit of the olive tree (Olea europaea L.) consist of three basic parts: the
skin (epicarp), the pulp (mesocarp), and the pit (endocarp). The pulp accounts
for approximately 75% of the total weight and contains the major part of the
oil and water of the fruit, which represent about 20-35% and 30-60%,
respectively.l'> In Fig. 1a, the averaged spectra of each class are presented
to illustrate the distinct pattern of the olive samples. Two broad bands at
7500-6150cm ™' and 5350-4550cm”' dominate the spectrum of all
olives. These bands due to water can be located at 6950 and 5210cm ™' and
are assigned to the first overtone of OH symmetric and antisymmetric
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Figure 1. (a) Diffuse reflectance NIR spectra of olive samples: mean spectrum of
classes sound (solid), disease (dot), fermented (dash), ground (dash dot), and frostbite
(dash dot dot). (b) Variance spectrum of sound (solid), disease (dot), fermented (dash),
ground (dash dot), and frostbite (dash dot dot) classes.
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stretching (2v, 3) and to combination of OH stretching and bending (v, 3 + v»),
respectively.!'® The significant bands of the olive oil are also clearly visible in
all of them. They are located at 4260 and 4370 cm ™', which are characteristic
for the combination of C—H-stretching vibrations of —CHj; and —CH, with
other vibrations. The two bands at 5700 and 5750cm ™' correspond to the
first overtone of the C—H stretching vibration of —CH;, —CH,, and
—HC=CH-. In the region between 7700 and 9100cm ', the
second overtone of the C—H stretching vibration of —CHj;, —CH,, and
—HC=CH-— can be found.""”""®! Visual inspection of the mean spectra of
the classes reveals subtle differences among them. These can be better visual-
ized in Fig. 1b, where the variance spectra of the different classes are
presented. The variance within the class sound can be attributed to compo-
sitional differences among the eight varieties considered and variations in
oil and water content. For the rest of the classes, the different alteration
processes lead to the development of characteristic spectral features, with
disease samples showing the more distinct pattern.

Unsupervised Pattern Recognition
HCA

After a first inspection of the untreated data, MSC was found to be an appro-
priate pretreatment. Hierarchical cluster of the mean centered spectra after
MSC pretreatment identified five main clusters (Fig. 2). Cluster A was a
mixture of ground, fermented, and frostbite samples. It was a large cluster
separated into four subgroups. The first subgroup contained samples from
fermented and ground classes and two frostbite samples. The second was
formed by 10 frostbite samples and 1 sample with disease. The third
subgroup included 12 fermented samples and 1 with frostbite. The last one
was a mixture of fermented, ground, and frostbite samples. Custer B was
formed by sound and frostbite samples and one sample with disease.
Cluster C was a pure cluster, constituted by 21 sound samples. D was
a very small cluster formed by three samples with disease (Verticillium).
Cluster E contained 18 fermented samples, 3 frostbite and 6 ground
samples. These results indicate a certain overlap between fermented and
ground classes and to a lesser extent with frostbite class. Although overlap
between sound and frostbite classes is observed, there is a very good separ-
ation among sound samples and fermented or ground.

PCA
With PCA, the data can be plotted in a new coordinate system based on

maximum variance. The origin of the new coordinate axes is the center of
the data, and the principal components define the variance axes. Each
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Figure 2. Dendrogram of the mean-centered and MSC corrected data using Eucli-
dean distances and the Ward algorithm.

principal component describes a different direction of variance in the data. By
plotting the data in a coordinate system defined by the most significant
principal components, it is possible to identify key relationships in the data
(i.e., find similarities and differences among objects in a data set.)

First, PCA was done including all the samples. It revealed that the six
disease samples were very distant from the others but did not form a clear
cluster. Clustering of the rest of the olive samples into distinct groups was not
apparent until these six samples were considered outliers and eliminated. The
so-achieved grouping can be best seen by plotting the score values in the
dimension formed by PC1 and PC4 (Fig. 3). PC1 explained 78.3% of the total
variability (tot. var.) and clearly affected a separation between sound and
ground or fermented samples. PC4 (2.1% tot. var.) helped to achieve better clus-
tering, although ground and fermented classes still overlapped. Samples with
frostbite formed a cluster, which slightly overlapped with sound, fermented,
and ground classes. These results agree with those obtained using HCA. With
the help of PC3 (3% tot. var.) and especially PC5 (0.9% tot. var.), separation
between fermented and ground classes was achieved (not shown). On the
contrary, PC2 (15.4% tot. var.) did not contribute to the clustering.

Detailed chemical interpretation of the discriminative information present
in the different principal components is not easy because bands in the NIR
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Figure 3. Samples in the space defined by the first and fourth PC of the mean-
centered and MSC corrected data. 0, sound; e, frostbite; a, ground; ¢, fermented olives.

region arise from overtones and combinations of fundamental vibrations. This
results in extensive overlapping in NIR bands. However, some chemical infor-
mation can be obtained from the PCA results. PC1 loadings vector (Fig. 4a),
which shows the maximum discriminative capability, shows spectral features
due to oil (bands at 5850 and 5700 cm ™', as well as 4335 and 4260 cm ™ 1).
Damaged olives have usually suffered dehydration due to their permanence
on the ground or storage. The oil content (referred to humid matter) is
therefore higher in these olives. This is reflected in higher values of this PC.
All bands of oil can be clearly identified in PC4 and PCS5, too. Furthermore,
PCI presents a band in the region of 4400cm ' that can be seen as
shoulder at 4408 cm™'. This region has been reported to show good corre-
lation with titratable fatty acids (free fatty acids).'” Thus, high score
values of PC1 also reflect lipolysis, which takes place extensively in ground
and fermented olives due to the action of microbial lipases, increasing free
fatty acids content in the oil. Frostbite samples showed scores for this PC
more similar to sound samples because dehydration does not take place and
free fatty acids are usually not formed as consequence of freezing.*”) PC4
and PC5 show bands in the regions 4800 and 6900, which can be attributed
to oxidation products formed during alteration of the olives.*"**! Other
remarkable bands of the PC loadings appear in the water absorption regions
and reflect the splitting of the water bands in different contributions. PC2
loading vector (Fig. 4a) exhibits a strong negative band at 5210cm™ !,
which can be attributed to a band of water that explains variance in water
content not related to class membership (this PC did not contribute to class
separation). Nevertheless, the spectrum of water in natural products is very
influenced by hydrogen bonding and dissolved organic and inorganic
materials. Changes in water spectrum due to water loss of agricultural
products such as soybean flour'"® and wheat seeds™® have been reported.
In particular, during drying a band attributed to free water located at
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Figure 4. Loading vectors of PCs: (a) PC1 (solid), PC2 (dot) PC4 (dash); (b) PC3
(solid), PC5 (dot).

7120cm” ! decreases, whereas a band at 6990 increases. Such contributions
can be identified in PC3 (at 7147 cm ™ ') and PC5 (6880 cm '), respectively.
It seems that the molecular states of water change with the alterations that
the olives suffer, and therefore bands of different water species contribute to
the discrimination between the different classes of olives.

Supervised Pattern Recognition

The unsupervised techniques showed that the natural groupings within
the NIR spectra of the samples coincide largely with the known class-
memberships. Therefore discriminant analysis, a supervised pattern recog-
nition technique, was applied. This classification technique uses a training
data set to establish classification rules, which are used to classify samples
of unknown origin. A model always delivers smallest residuals for the
training set itself. For testing model performance, a leave-a-fourth-out
cross-validation procedure was applied. Three-quarters of the samples were
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assigned to the training set and the other quarter to the test set. This assignment
was repeated four times, so that each sample was predicted once. All classifi-
cation results presented in this section refer to validation results.

The six samples with diseases were too few to define a particular class.
Furthermore, they showed no tendency to form a group, as it was seen in
the PCA analysis, and only three of them formed a cluster when HCA was
applied. It was therefore decided not to include them in the training set as a
particular class. However, they were included in the validation procedure to
check if they would be misclassified or recognized as not belonging to any
class.

Table 2 summarizes the results obtained using a classification model with
five principal components for each class. Classification errors were divided
into false positive (i.e., how many samples have been wrongly classified to
class x) and false negative (i.e., how many samples of class x have been
wrongly assigned to other classes). All sound samples were correctly classi-
fied, and prediction abilities higher than 90% were obtained for ground and
fermented classes. Predictions for frostbite class were not as good, with the
highest number of false negatives. This reflects the overlap of this class
with sound and ground classes, which can also be seen in Figs. 5a and 5b.
In general, freeze damages (frostbite) in the olives are found to affect the
quality less than other alterations. In a recent study, the main quality
indices of the oil were found not to be strongly affected by freeze damage,
especially the acidity did not increase significantly.”” Furthermore, the
extent of freeze damage in the olives depends on the duration of their
exposure to chill. Thus, slightly freeze-damaged samples can easily fall
within the sound class limits. On the other hand, olives with freeze damage
are reported to have lower stability against oxidative degradation. This
could justify the overlap with the ground class for seriously damaged
samples. Furthermore, it was checked if olives of particular varieties gave

Table 2. Validation results of classification (prediction ability is given in
percentage)

Predicted class

Actual False
class Sound Frosbite Ground  Fermented negative
Sound 36 (100%) — — — 0/36
Frosbite 1 22 (79%) 4 — 1 6/28
Ground — — 24 (96%) 1 1 2/26
Fermented — — 1 24 (92%) 2 3/26
Disease — — — 1 5

False 1/86 0/94 5/96 2/96

positive
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s, ground; e, fermented; *, disease olives. Dashed lines mark the threshold limit.

more false negative classifications. But this was not the case. False positive
classifications in the class sound are the most critical aspect to be considered,
because it can cause a decrease in the quality of the produced oil. Anyway,
with the final decision based on the minimum distance, only one of the
frostbite samples was classified as sound.

None of the ground and fermented samples was misclassified as sound. As
can be seen in Fig. 5a, all samples of these two classes fall very distant of the
sound class threshold limit.

The highest number of false positives was observed for the class ground,
probably due to the higher diversity of ground samples as a consequence of the
manner in which these olives are collected: in contact with the ground,
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vegetable matter and soil can be incorporated and different alteration
processes can take place.

From the six olives with disease, only one was assigned to the class
fermented. The others were found to be closest to frostbite or ground, but
with large distances to all the classes. One fermented, one frostbite, and one
ground sample were also not assigned to any of the four classes: they showed
distances slightly higher than the threshold limit for their respective classes.

Quantification of Oil and Water Content in Olives
Using PLS Regression

The determination of oil and water content in olives was first approached con-
sidering all the samples. The number of latent variables that minimized the
prediction error sum of squares (PRESS)"** during a leave-one-out cross-
validation procedure was selected to construct the models. After optimization,
best results in terms of prediction ability, evaluated with the root mean
square error of prediction (RMSEP)?* in the cross-validation procedure
were obtained using the first derivative of the MSC corrected spectra. A
seven-point third polynomial order Savitzky-Golay filter was used for
smoothing. Outlier diagnostics were used to ensure the quality of the cali-
bration set by identifying outlier samples with high error and high leverage
(large influence on the model). With this diagnostic, no outliers were
detected. Results are summarized in Table 3. Relative errors of prediction
(REP) (calculated dividing the RMSEP by the mean value of the concen-
trations) of 7.2% and 3.4% were obtained for oil and water, respectively.
These results are less accurate than those previously reported by Jimenez
et al.!”! In the mentioned work, relative errors of prediction estimated consid-
ering the mean of the concentration range (the exact distribution of the popu-
lation is not given) represent about 3.3% and 1.8%. The authors used a NIR
instrument equipped with optical filters, and the calibration was done by
multiple linear regression (MLR). Nevertheless, it should be emphasized
that only olives from the variety Picual were considered in the mentioned
study. Furthermore, samples were collected from the tree and analyzed
within 24 hr after collection. In the current work, much more variance of
different origin is present in the data, which could be the reason for the less
accurate predictions.

To evaluate if the previous classification of the olive samples could
improve the quantification results, samples were divided in two groups
(sound and damaged). Here, we focus only in the accurate analysis of sound
olives. Results are summarized in Table 3. For the models constructed with
damaged samples, results are similar to those with all the samples.
Removing the sound samples does not reduce the complexity of the data
set. This is reflected in the number of latent variables needed to construct
the models, which were the same as in the models using all the samples.
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Table 3. Results of the PLS models for oil and water determination in olives®

All samples Sound Damaged

Oil

Concentration range 18.9-35.3 18.9-28.8 22.2-353

Mean value 26.0 23.0 27.3

Standard deviation 3.43 2.24 3.07

No. latent variables 6 4 6

R 0.94 0.97 0.95

RMSEP 1.88 0.87 1.76

REP (%) 7.2 3.8 6.4

RPD 1.82 2.57 1.74
Water

Concentration range 32.8-61.8 46.1-61.83 32.8-50.3

Mean value 46.3 532 432

Standard deviation 6.99 3.65 5.63

No. latent variables 7 4 7

R 0.98 0.97 0.99

RMSEP 1.71 1.49 1.76

REP (%) 34 2.8 4.1

RPD 4.09 2.45 3.20

PLS, partial least squres; RMSEP, root mean square error of prediction; REP,
relative errors of prediction; RPD, ratio performance deviation.

“Models were constructed with first derivative and MSC correction. Prediction
results correspond to a leave-one-out cross-validation procedure.

However, the models for sound samples were less complex: four latent
variables were needed for both oil and water. These models gave much
better results, with relative errors of prediction of 3.8% and 2.8% for oil
and water content, respectively. These results are similar to those from
Jimenez et al. or even better considering that in the current study eight
different varieties of sound olives were included. To standardize the predictive
ability, the ratio performance deviation (RPD)'**! was calculated (Table 3).
The RPD values were greater than 2.0 for the models constructed with the
sound samples.

CONCLUSIONS

The presented results show that NIR spectroscopy offers an excellent alterna-
tive to the traditional methods for olive fruit analysis. Additionally, it makes
classification of the fruits possible. Due to the rapidity of the analysis, NIR
spectroscopy can provide a tool for establishing a fruit sorting system. Inspec-
tion devices could be implemented directly in the production facility providing
a means for selecting sound olives in order to produce high-quality virgin
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olive oil. Furthermore, it has been demonstrated that much more accurate
prediction of water and oil content in olives can be obtained if fruits are
previously classified in different categories and separate quantification
models are created for each class.
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