
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
On: 30 January 2011
Access details: Access Details: Free Access
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713597299

Fourier-Transform Near-Infrared Spectroscopy as a Tool for Olive Fruit
Classification and Quantitative Analysis
María José Ayora-Cañadaa; Barbara Muika; Jose Antonio García-Mesab; Domingo Ortega-Calderónb;
Antonio Molina-Díaza

a Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain b CIFA Venta del
Llano, IFAPA, Jaén, Spain

To cite this Article Ayora-Cañada, María José , Muik, Barbara , García-Mesa, Jose Antonio , Ortega-Calderón, Domingo
and Molina-Díaz, Antonio(2005) 'Fourier-Transform Near-Infrared Spectroscopy as a Tool for Olive Fruit Classification
and Quantitative Analysis', Spectroscopy Letters, 38: 6, 769 — 785
To link to this Article: DOI: 10.1080/00387010500316106
URL: http://dx.doi.org/10.1080/00387010500316106

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713597299
http://dx.doi.org/10.1080/00387010500316106
http://www.informaworld.com/terms-and-conditions-of-access.pdf


Fourier-Transform Near-Infrared
Spectroscopy as a Tool for Olive Fruit

Classification and Quantitative Analysis
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Abstract: The potential of diffuse reflectance near-infrared spectroscopy combined with

pattern recognition to discriminate between olives (Olea europaea L.) of different

qualities has been tested. The sample set was formed of sound olive fruits and those

showing the most common alterations of olives, which lead to decreased oil quality,

namely freeze damages, harvest after falling on the ground, fermentation due to

prolonged storage time, and olive tree diseases. Near-infrared (NIR) spectra were

recorded between 9900 and 4100 cm21. Preliminary studies of the data set structure

were performed using hierarchical cluster analysis and principal component analysis. Dis-

criminant analysis provided prediction abilities of 100% for sound, 79% for frostbite, 96%

for ground, and 92% for fermented olives using a leave-a-fourth-out cross-validation

procedure. Quantification of oil and water content in the olives was also approached by
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using partial least squares (PLS) regression. Results, in terms of predictive ability using a

leave-one-out cross-validation, were compared for calibration using the whole sample set

and calibrations for the sound and damaged samples separately. Relative errors of

prediction using all samples were 7.2% and 3.4% for oil content and humidity, respect-

ively. Using only sound samples, relative errors of prediction of 3.8% and 2.8% for oil

and water content, respectively, were obtained. Thus, better accuracy could be

achieved when classification of the olive samples prior to quantitative analysis was

performed. These results demonstrate the utility of NIR spectroscopy to differentiate

olives of different qualities. Using NIR, a fast selection of sound olives in a quality-

orientated production facility becomes feasible.

Keywords: Classification, Fourier-transform near-infrared spectroscopy, olives,

partial least squares, pattern recognition

INTRODUCTION

The olive fruit (Olea europaea L.) constitutes the raw material in olive oil

production. Virgin olive oil is obtained from the fruit of the olive tree only

by mechanical or other physical means in conditions, particularly thermal

conditions, which do not alter the oil in any way. As one of the few

vegetable oils which can be consumed directly without the need of refining,

it completely conserves vitamins, antioxidants and other dietary important

constituents and can be qualified as a natural product. But to be considered

fit for direct consumption virgin olive oil must fulfil different quality

criteria that, according to the European Commission regulations,[1,2] include

good organoleptic characteristics (taste and aroma), low acidity, low

peroxide value, and absence of contaminants. Oil of inferior quality is

called lampante and must be refined prior to consumption.

From the industrial point of view, the two major parameters that

characterize the olive as raw material are oil content and humidity

(vegetation water). In routine laboratories, traditional slow analytical

methods to determine oil content have been nowadays substituted by direct

spectroscopic measurement using nuclear magnetic resonance (NMR).[3]

These analyses involve parameters that exclusively refer to the industrial

yield (i.e., to the amount of oil which can be extracted from a certain mass

of olives). But the production of good quality oil must start necessarily with

raw material of high quality. Damage of the olives during growth phase,

harvest, and storage leads to decreased oil quality.[4] Analytical methods to

evaluate the state of the olives before oil extraction are therefore of crucial

importance. The only quality parameter that is actually measured in olives

is acidity (free fatty acid content). Sound fruits contain low levels of free

fatty acids, but these values are increased by different alterations of the

olive fruit. Thus, the measurement of acidity provides a rough estimation of

the alterations the olive has suffered. The method implicates the extraction

of the oil from the olive. This is normally done by the Abencor method,[5]
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which reproduces the industrial oil extraction process in laboratory scale.

Afterwards, acidity is determined in the oil by an acid-base titration with

potassium hydroxide in ethanol/ether and phenolphthalein as indicator.[6]

Hence, this method is slow and elaborate. Consequently, only few

producers measure acidity in olives, and the quality control of the raw

material, if done at all, is mostly reduced to visual inspections. Nevertheless,

a separation of olives according to their quality would be necessary if the

production of extra virgin olive oil is the goal. To do this, a fast and

objective analytical method is desirable.

Near-infrared spectroscopy (NIRS) is a valuable tool for the analysis of

complex samples. In many cases, the analysis can be carried out without any

sample preparation, thus providing results in an experimental simple way. In

the analysis of olives, NIRS has been proposed as a convenient alternative for

the direct determination of oil and water content simultaneously in the milled

olives.[7] This method avoids the time-consuming step of drying the sample,

which is needed in all above-mentioned methods and thus provides results

much faster. More recently, the quantitative determination of oil content,

humidity, and major fatty acids in intact olive fruits has been approached.[8]

These works demonstrate that NIRS can constitute an efficient and flexible

solution for the fast analysis of large number of raw material samples.

A further benefit of this technique is that it is possible to bypass

classical, quantitative chemical analysis if the desired property is reflected

in the overall chemical composition of the sample. Using chemometrics,

this information can be extracted from the spectra. Thus, in the analysis of

olives, the measurement of traditional parameters like acidity become

dispensable, if the information contained in the near-infrared spectra of the

olives is sufficient for the discrimination of sound and defective olives.

The aim of the current study is to explore the potential of FT-NIR

spectroscopy to provide a fast method to classify olives according to

their quality before the extraction of the oil in the production facility. For

this, the most common types of alterations that olives can suffer were

considered. They included freeze damage, deterioration of the fruit flesh

due to the fall from the tree and the permanence on the ground for several

days, fermentation as a consequence of excessive storage time in piles, and

infestation by olive tree diseases.

Furthermore, it is well-known that parameters like harvest year and

variety have great influence on oil content and humidity in the olives. In

previous studies, authors report on the difficulties of partial least

squares (PLS) calibration transfer between different years.[9] In the

current work, we furthermore investigate the influence of olive quality on

the determination of oil content and humidity by PLS. This is done by

comparing the predictive ability of calibration models that are built on

the individual classes using a classification step prior to quantification

with the predictive ability of the calibration model that is built on the

whole sample set.
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EXPERIMENTAL

Olive Samples

A total of 122 olive samples were collected in the period January–March 2004

in the olive culture and process research station CIFA Venta del LLano (Jaén,

Spain). They included 36 samples of sound olives (of 8 different varieties)

collected from the tree, 28 of olives with frostbite, 6 samples with diseases

(Verticillium wilt and Anthracnose), 26 fermented olive samples, and 26

samples of olives that had been collected from the ground. In Table 1,

sample details including range, mean, standard deviation of oil content and

humidity, and the number of varieties present in each class are presented. In

tables, figures, and in the text, samples will be referred to in following five

classes: sound, frostbite, disease, fermented, and ground.

Reference Analysis

One kilogram of the sample was milled in a hammer mill (4-mm strainer size).

To determine water content, 45 g of the sample was dried for 12 hr in an oven

at 1058C. The loss of weight gave the percentage of water and volatile matter

of the sample.[10] The dried sample was then used to measure the oil content,

employing NMR spectroscopy.[3]

Acquisition of NIR Spectra

Fourier-transform near-infrared spectra were measured in diffuse reflectance

mode using an Antaris Near-IR Analyzer (Thermo Nicolet Corporation,

Madison, WI, USA). The instrument is equipped with an integrating sphere

that contains an internal gold reference.

The milled sample was filled into a sample cup (5-cm diameter, 1-cm depth)

that was placed on top of the integrating sphere optics and rotated during

measurement (10 rounds per minute). All spectra were obtained between 4100

Table 1. Sample characteristics of the individual classes

Humidity % Oil content %

(mean) SD Range (mean) SD Range Varieties

Sound 53.2 3.6 46.1–61.8 23.0 2.2 18.9–28.8 8

Frostbite 44.3 3.6 37.7–50.6 26.3 2.6 22.2–32.3 7

Ground 38.9 3.2 33.9–44.4 28.3 3.7 23.5–35.3 4

Fermented 46.3 3.9 32.9–47.4 27.5 0.9 27.2–30.5 —

Disease 37.2 12.1 23.2–53.9 25.6 6.1 18.0–31.9 4
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and 9900 cm21 at a resolution of 8 cm21 and were mean of 50 scans, which

resulted in an acquisition time of 1 min. A background spectrum average of

50 scans was collected before each sample measurement.

Data Analysis

Data Pretreatment

Mean centering was used to enhance the smaller spectral differences

removing the common information from the spectra. Multiplicative

signal correction (MSC), which uses a mathematical function originally

developed to compensate for variations in light scattering, was also

applied.[11] This correction method assumes that the wavenumber depen-

dency of light-scattering or baseline signal is different from that of the

chemical information. The MSC treatment is often used in near-infrared

diffuse reflectance measurements to compensate for variations in effective

sample thickness that are caused by differences in particle size and scatter-

ing. First derivatives were calculated with the polynomial method of

Savitzky-Golay.[12]

Pattern Recognition Techniques

Pattern recognition techniques can be mainly divided into two categories,

namely unsupervised and supervised techniques. The former focus on

investigating the structure in the data, detecting similarities among samples

or the presence of outliers. They do not require information about class

membership because their aim is not to define a classification rule. In

contrast, supervised methods use information on class membership to build

up a classifier. The models are constructed using the sample characteristics

of a training set to establish classification rules, which are then applied to

obtain the class-membership of unknown samples.

Unsupervised Pattern Recognition

Hierarchical Cluster Analysis (HCA). For cluster analysis, each sample is

treated as a point in an n-dimensional space defined by the measurement

variables. Cluster analysis assesses the similarity between samples by

measuring the distances between the points in the measurement space. In

this work, the similarity matrix for hierarchical clustering was calculated

using Euclidean distances, and the Ward algorithm[13] was used to generate

the dendrograms.

Principal Component Analysis (PCA). The overall goal of PCA is to reduce

the dimensionality of a data set. PCA decomposes the original data matrix into
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a product of two matrices, the scores and the loadings matrix. The loadings

form the new reduced coordinate system in which the samples are represented

with their score values. Thus, the scores matrix contains the information of the

objects. When PCA is applied for pattern recognition purposes, this infor-

mation is used to detect groupings among the samples.

Supervised Pattern Recognition

In the discriminant analysis classification technique (TQ Analyst 6.1.1),

principal component analysis (PCA) is performed to reduce the number of

variables in the analysis. The loading vectors of the principal components

are then used as the variables for entry into a quadratic discriminant

analysis (QDA) model, which maximizes the variance between groups and

minimizes the variance within groups. Each sample is represented by its

score values as a data point in the new dimensions, and a multivariate

normal distribution is calculated for each class using the information of the

training samples. To determine the class membership of an unknown

sample, its Mahalanobis distances are measured to the means of all classes

and the unknown is assigned to the class with the minimum distance. Further-

more, a threshold limit of 2 Mahalanobis distance units was defined. If the

minimum distance of an unknown was above the threshold distance value,

the sample was considered not to belong to any class.

Multivariate Calibration: Partial Least Squares Regression

Partial least squares (PLS) regression is one of the most widely used methods

for multivariate calibration. It is based on spectral decomposition in which the

original variables are replaced by so-called latent variables, which are linear

combinations of the original ones.[14] For this calculation, PLS uses the

spectral and concentration information and maximizes the covariance

between them, so achieving latent variables that are directly related to

the constituents of interest. PLS is a powerful full spectrum method with

excellent model-diagnostic capabilities, which can account for undefined

spectral variations that are not related to the constituents of interest, as long

as they are included in the calibration phase.

Software

Hierarchical cluster analysis (HCA) was performed using the Statistics

Toolbox (Version 2.2 (R11), 1998) for Matlab (The Mathswork, Inc.,

Natick, MA, USA). Principal component analysis (PCA), discriminant

analysis, and PLS were done using TQ Analyst 6.1.1 (Thermo Nicolet Corp.).
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RESULTS AND DISCUSSION

Near-Infrared Spectra of Olives

The fruit of the olive tree (Olea europaea L.) consist of three basic parts: the

skin (epicarp), the pulp (mesocarp), and the pit (endocarp). The pulp accounts

for approximately 75% of the total weight and contains the major part of the

oil and water of the fruit, which represent about 20–35% and 30–60%,

respectively.[15] In Fig. 1a, the averaged spectra of each class are presented

to illustrate the distinct pattern of the olive samples. Two broad bands at

7500–6150 cm21 and 5350–4550 cm21 dominate the spectrum of all

olives. These bands due to water can be located at 6950 and 5210 cm21 and

are assigned to the first overtone of OH symmetric and antisymmetric

Figure 1. (a) Diffuse reflectance NIR spectra of olive samples: mean spectrum of

classes sound (solid), disease (dot), fermented (dash), ground (dash dot), and frostbite

(dash dot dot). (b) Variance spectrum of sound (solid), disease (dot), fermented (dash),

ground (dash dot), and frostbite (dash dot dot) classes.
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stretching (2n1,3) and to combination of OH stretching and bending (n1,3þ n2),

respectively.[16] The significant bands of the olive oil are also clearly visible in

all of them. They are located at 4260 and 4370 cm21, which are characteristic

for the combination of C–H-stretching vibrations of 2CH3 and 2CH2 with

other vibrations. The two bands at 5700 and 5750 cm21 correspond to the

first overtone of the C–H stretching vibration of 2CH3, 2CH2, and

2HC55CH2. In the region between 7700 and 9100 cm21, the

second overtone of the C–H stretching vibration of 2CH3, 2CH2, and

2HC55CH2 can be found.[17,18] Visual inspection of the mean spectra of

the classes reveals subtle differences among them. These can be better visual-

ized in Fig. 1b, where the variance spectra of the different classes are

presented. The variance within the class sound can be attributed to compo-

sitional differences among the eight varieties considered and variations in

oil and water content. For the rest of the classes, the different alteration

processes lead to the development of characteristic spectral features, with

disease samples showing the more distinct pattern.

Unsupervised Pattern Recognition

HCA

After a first inspection of the untreated data, MSC was found to be an appro-

priate pretreatment. Hierarchical cluster of the mean centered spectra after

MSC pretreatment identified five main clusters (Fig. 2). Cluster A was a

mixture of ground, fermented, and frostbite samples. It was a large cluster

separated into four subgroups. The first subgroup contained samples from

fermented and ground classes and two frostbite samples. The second was

formed by 10 frostbite samples and 1 sample with disease. The third

subgroup included 12 fermented samples and 1 with frostbite. The last one

was a mixture of fermented, ground, and frostbite samples. Custer B was

formed by sound and frostbite samples and one sample with disease.

Cluster C was a pure cluster, constituted by 21 sound samples. D was

a very small cluster formed by three samples with disease (Verticillium).

Cluster E contained 18 fermented samples, 3 frostbite and 6 ground

samples. These results indicate a certain overlap between fermented and

ground classes and to a lesser extent with frostbite class. Although overlap

between sound and frostbite classes is observed, there is a very good separ-

ation among sound samples and fermented or ground.

PCA

With PCA, the data can be plotted in a new coordinate system based on

maximum variance. The origin of the new coordinate axes is the center of

the data, and the principal components define the variance axes. Each
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principal component describes a different direction of variance in the data. By

plotting the data in a coordinate system defined by the most significant

principal components, it is possible to identify key relationships in the data

(i.e., find similarities and differences among objects in a data set.)

First, PCA was done including all the samples. It revealed that the six

disease samples were very distant from the others but did not form a clear

cluster. Clustering of the rest of the olive samples into distinct groups was not

apparent until these six samples were considered outliers and eliminated. The

so-achieved grouping can be best seen by plotting the score values in the

dimension formed by PC1 and PC4 (Fig. 3). PC1 explained 78.3% of the total

variability (tot. var.) and clearly affected a separation between sound and

ground or fermented samples. PC4 (2.1% tot. var.) helped to achieve better clus-

tering, although ground and fermented classes still overlapped. Samples with

frostbite formed a cluster, which slightly overlapped with sound, fermented,

and ground classes. These results agree with those obtained using HCA. With

the help of PC3 (3% tot. var.) and especially PC5 (0.9% tot. var.), separation

between fermented and ground classes was achieved (not shown). On the

contrary, PC2 (15.4% tot. var.) did not contribute to the clustering.

Detailed chemical interpretation of the discriminative information present

in the different principal components is not easy because bands in the NIR

Figure 2. Dendrogram of the mean-centered and MSC corrected data using Eucli-

dean distances and the Ward algorithm.
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region arise from overtones and combinations of fundamental vibrations. This

results in extensive overlapping in NIR bands. However, some chemical infor-

mation can be obtained from the PCA results. PC1 loadings vector (Fig. 4a),

which shows the maximum discriminative capability, shows spectral features

due to oil (bands at 5850 and 5700 cm21, as well as 4335 and 4260 cm21).

Damaged olives have usually suffered dehydration due to their permanence

on the ground or storage. The oil content (referred to humid matter) is

therefore higher in these olives. This is reflected in higher values of this PC.

All bands of oil can be clearly identified in PC4 and PC5, too. Furthermore,

PC1 presents a band in the region of 4400 cm21 that can be seen as

shoulder at 4408 cm21. This region has been reported to show good corre-

lation with titratable fatty acids (free fatty acids).[19] Thus, high score

values of PC1 also reflect lipolysis, which takes place extensively in ground

and fermented olives due to the action of microbial lipases, increasing free

fatty acids content in the oil. Frostbite samples showed scores for this PC

more similar to sound samples because dehydration does not take place and

free fatty acids are usually not formed as consequence of freezing.[20] PC4

and PC5 show bands in the regions 4800 and 6900, which can be attributed

to oxidation products formed during alteration of the olives.[21,22] Other

remarkable bands of the PC loadings appear in the water absorption regions

and reflect the splitting of the water bands in different contributions. PC2

loading vector (Fig. 4a) exhibits a strong negative band at 5210 cm21,

which can be attributed to a band of water that explains variance in water

content not related to class membership (this PC did not contribute to class

separation). Nevertheless, the spectrum of water in natural products is very

influenced by hydrogen bonding and dissolved organic and inorganic

materials. Changes in water spectrum due to water loss of agricultural

products such as soybean flour[16] and wheat seeds[23] have been reported.

In particular, during drying a band attributed to free water located at

Figure 3. Samples in the space defined by the first and fourth PC of the mean-

centered and MSC corrected data. A, sound; †, frostbite; 4, ground; S, fermented olives.
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7120 cm21 decreases, whereas a band at 6990 increases. Such contributions

can be identified in PC3 (at 7147 cm21) and PC5 (6880 cm21), respectively.

It seems that the molecular states of water change with the alterations that

the olives suffer, and therefore bands of different water species contribute to

the discrimination between the different classes of olives.

Supervised Pattern Recognition

The unsupervised techniques showed that the natural groupings within

the NIR spectra of the samples coincide largely with the known class-

memberships. Therefore discriminant analysis, a supervised pattern recog-

nition technique, was applied. This classification technique uses a training

data set to establish classification rules, which are used to classify samples

of unknown origin. A model always delivers smallest residuals for the

training set itself. For testing model performance, a leave-a-fourth-out

cross-validation procedure was applied. Three-quarters of the samples were

Figure 4. Loading vectors of PCs: (a) PC1 (solid), PC2 (dot) PC4 (dash); (b) PC3

(solid), PC5 (dot).
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assigned to the training set and the other quarter to the test set. This assignment

was repeated four times, so that each sample was predicted once. All classifi-

cation results presented in this section refer to validation results.

The six samples with diseases were too few to define a particular class.

Furthermore, they showed no tendency to form a group, as it was seen in

the PCA analysis, and only three of them formed a cluster when HCA was

applied. It was therefore decided not to include them in the training set as a

particular class. However, they were included in the validation procedure to

check if they would be misclassified or recognized as not belonging to any

class.

Table 2 summarizes the results obtained using a classification model with

five principal components for each class. Classification errors were divided

into false positive (i.e., how many samples have been wrongly classified to

class x) and false negative (i.e., how many samples of class x have been

wrongly assigned to other classes). All sound samples were correctly classi-

fied, and prediction abilities higher than 90% were obtained for ground and

fermented classes. Predictions for frostbite class were not as good, with the

highest number of false negatives. This reflects the overlap of this class

with sound and ground classes, which can also be seen in Figs. 5a and 5b.

In general, freeze damages (frostbite) in the olives are found to affect the

quality less than other alterations. In a recent study, the main quality

indices of the oil were found not to be strongly affected by freeze damage,

especially the acidity did not increase significantly.[20] Furthermore, the

extent of freeze damage in the olives depends on the duration of their

exposure to chill. Thus, slightly freeze-damaged samples can easily fall

within the sound class limits. On the other hand, olives with freeze damage

are reported to have lower stability against oxidative degradation. This

could justify the overlap with the ground class for seriously damaged

samples. Furthermore, it was checked if olives of particular varieties gave

Table 2. Validation results of classification (prediction ability is given in

percentage)

Actual

class

Predicted class

False

negativeSound Frosbite Ground Fermented

Sound 36 (100%) — — — 0/36

Frosbite 1 22 (79%) 4 — 1 6/28

Ground — — 24 (96%) 1 1 2/26

Fermented — — 1 24 (92%) 2 3/26

Disease — — — 1 5

False

positive

1/86 0/94 5/96 2/96
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more false negative classifications. But this was not the case. False positive

classifications in the class sound are the most critical aspect to be considered,

because it can cause a decrease in the quality of the produced oil. Anyway,

with the final decision based on the minimum distance, only one of the

frostbite samples was classified as sound.

None of the ground and fermented samples was misclassified as sound. As

can be seen in Fig. 5a, all samples of these two classes fall very distant of the

sound class threshold limit.

The highest number of false positives was observed for the class ground,

probably due to the higher diversity of ground samples as a consequence of the

manner in which these olives are collected: in contact with the ground,

Figure 5. Cooman’s plots showing (a) distances of samples to classes sound and

frostbite and (b) distances to classes fermented and ground. A, sound; †, frostbite;

K, ground; V, fermented; �, disease olives. Dashed lines mark the threshold limit.
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vegetable matter and soil can be incorporated and different alteration

processes can take place.

From the six olives with disease, only one was assigned to the class

fermented. The others were found to be closest to frostbite or ground, but

with large distances to all the classes. One fermented, one frostbite, and one

ground sample were also not assigned to any of the four classes: they showed

distances slightly higher than the threshold limit for their respective classes.

Quantification of Oil and Water Content in Olives
Using PLS Regression

The determination of oil and water content in olives was first approached con-

sidering all the samples. The number of latent variables that minimized the

prediction error sum of squares (PRESS)[24] during a leave-one-out cross-

validation procedure was selected to construct the models. After optimization,

best results in terms of prediction ability, evaluated with the root mean

square error of prediction (RMSEP)[24] in the cross-validation procedure

were obtained using the first derivative of the MSC corrected spectra. A

seven-point third polynomial order Savitzky-Golay filter was used for

smoothing. Outlier diagnostics were used to ensure the quality of the cali-

bration set by identifying outlier samples with high error and high leverage

(large influence on the model). With this diagnostic, no outliers were

detected. Results are summarized in Table 3. Relative errors of prediction

(REP) (calculated dividing the RMSEP by the mean value of the concen-

trations) of 7.2% and 3.4% were obtained for oil and water, respectively.

These results are less accurate than those previously reported by Jimenez

et al.[7] In the mentioned work, relative errors of prediction estimated consid-

ering the mean of the concentration range (the exact distribution of the popu-

lation is not given) represent about 3.3% and 1.8%. The authors used a NIR

instrument equipped with optical filters, and the calibration was done by

multiple linear regression (MLR). Nevertheless, it should be emphasized

that only olives from the variety Picual were considered in the mentioned

study. Furthermore, samples were collected from the tree and analyzed

within 24 hr after collection. In the current work, much more variance of

different origin is present in the data, which could be the reason for the less

accurate predictions.

To evaluate if the previous classification of the olive samples could

improve the quantification results, samples were divided in two groups

(sound and damaged). Here, we focus only in the accurate analysis of sound

olives. Results are summarized in Table 3. For the models constructed with

damaged samples, results are similar to those with all the samples.

Removing the sound samples does not reduce the complexity of the data

set. This is reflected in the number of latent variables needed to construct

the models, which were the same as in the models using all the samples.

M. J. Ayora-Cañada et al.782
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However, the models for sound samples were less complex: four latent

variables were needed for both oil and water. These models gave much

better results, with relative errors of prediction of 3.8% and 2.8% for oil

and water content, respectively. These results are similar to those from

Jimenez et al. or even better considering that in the current study eight

different varieties of sound olives were included. To standardize the predictive

ability, the ratio performance deviation (RPD)[25] was calculated (Table 3).

The RPD values were greater than 2.0 for the models constructed with the

sound samples.

CONCLUSIONS

The presented results show that NIR spectroscopy offers an excellent alterna-

tive to the traditional methods for olive fruit analysis. Additionally, it makes

classification of the fruits possible. Due to the rapidity of the analysis, NIR

spectroscopy can provide a tool for establishing a fruit sorting system. Inspec-

tion devices could be implemented directly in the production facility providing

a means for selecting sound olives in order to produce high-quality virgin

Table 3. Results of the PLS models for oil and water determination in olivesa

All samples Sound Damaged

Oil

Concentration range 18.9–35.3 18.9–28.8 22.2–35.3

Mean value 26.0 23.0 27.3

Standard deviation 3.43 2.24 3.07

No. latent variables 6 4 6

R 0.94 0.97 0.95

RMSEP 1.88 0.87 1.76

REP (%) 7.2 3.8 6.4

RPD 1.82 2.57 1.74

Water

Concentration range 32.8–61.8 46.1–61.83 32.8–50.3

Mean value 46.3 53.2 43.2

Standard deviation 6.99 3.65 5.63

No. latent variables 7 4 7

R 0.98 0.97 0.99

RMSEP 1.71 1.49 1.76

REP (%) 3.4 2.8 4.1

RPD 4.09 2.45 3.20

PLS, partial least squres; RMSEP, root mean square error of prediction; REP,

relative errors of prediction; RPD, ratio performance deviation.
aModels were constructed with first derivative and MSC correction. Prediction

results correspond to a leave-one-out cross-validation procedure.
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olive oil. Furthermore, it has been demonstrated that much more accurate

prediction of water and oil content in olives can be obtained if fruits are

previously classified in different categories and separate quantification

models are created for each class.
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